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ABSTRACT

SLAM, or Simultaneous Localization and Mapping, is the combined problem of constructing

a map of an agent’s environment while localizing, or tracking that same agent’s pose in tandem.

It is among the most challenging and fundamental tasks in computer vision, with applications

ranging from augmented reality to robotic navigation. With the increasing capability and

ubiquity of mobile computers such as cell phones, portable 3D SLAM systems are becoming

feasible for widespread use. The Microsoft Hololens, Google Project Tango, and other 3D

aware devices are modern day examples of the potential of SLAM and the challenges it has

yet to face. The ICP, or Iterative Closest Point Algorithm, is a popular solution for retrieving

the relative transformation between two scans of the same object. It has gained a resurgence

in popularity due to the rise of affordable depth sensors such as the Kinect in robotics and

augmented reality research. ICP, while providing a high certainty of correctness given similar

point clouds, is challenging to implement in real time due to its computational complexity.

In this thesis, a basic 3D SLAM algorithm is implemented and evaluated, and two proposed

FPGA architectures to accelerate the Nearest Neighbor component of ICP for use in a mobile

ARM-based System-on-Chip (SoC) are presented. These architectures are predicted to achieve

speedups of up to 7.89x and 17.22x over a näıve embedded software implementation.
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CHAPTER 1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM), is the task of creating the map of an

unknown environment while simultaneously estimating an agent’s position and pose within

that environment. SLAM is still an unsolved problem, with a wide array of applications such

as autonomous navigation, augmented reality, and robotics. With a capable and affordable

mobile SLAM system, digital and physical worlds can be integrated in exciting new ways for

gaming, productivity, and communication.

SLAM uses a diverse set of approaches that are presented in the academic literature. Global

maps can choose to store the environment as 2D [9] or 3D [6] information, and with varying

degrees of system memory requirements and granularity. Data can be received using various

methods, from a single 2D laser scanner [9], to RGB cameras [8], to modern day usage of

RGB-Depth cameras such as the Kinect and Intel RealSense [10]. Alignment techniques for

localization vary depending on the computational constraints of the system researched. These

range from relatively low computational cost techniques such as sparse landmark extraction

and association [10] all the way to dense all-to-all comparisons [28], generally a CPU intensive

task.

In this thesis, a computationally expensive Depth Frame SLAM technique, normally con-

strained to high end desktop computers, is brought to an embedded System-on-Chip (SoC)

with an ARM CPU and FPGA coprocessor. A scan matching SLAM algorithm using the

Iterative Closest Point (ICP) [3] algorithm is implemented and evaluated on a desktop, and

cross compiled for the Xilinx ZedBoard platform. The embedded application is profiled, and

two different hardware coprocessor architectures for accelerating the computationally expensive

Nearest Neighbor Search algorithm employed in ICP are designed, synthesized, and evaluated

using simulation.
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The main contributions of this project are as follows:

• A novel SLAM algorithm using ICP to align depth frames from the Kinect v2 sensor

• A baseline hardware coprocessor architecture accelerating the Nearest Neighbor Search

step of ICP

• A highly parallel coprocessor architecture, using 110 Nearest Neighbor Processing Ele-

ments, aiming to achieve maximum system throughput

The SLAM algorithm is implemented in C++ and uses the OpenCV library for image pro-

cessing. The evaluations show that it can map the 3D environments in the recorded SLAM

scenarios given slow rotational and translational motions. The baseline architecture is calcu-

lated to achieve theoretical speedups of up to 7.89x over a pure software implementation. The

parallel architecture has estimated speedups of 17.22x over a pure software implementation, a

2.19x speedup over the baseline architecture, and successfully meets the real-time requirements

of 2 depth frames processed per second.

The remainder of this thesis is structed as follows. Chapter 2 discusses SLAM in detail and

gives an overview of visual SLAM systems as well as hardware acceleration techniques. Chapter

3 describes landmark SLAM systems developed in the last 15 years, and provides an overview

of embedded SLAM systems presented in the academic literature. Chapter 4 introduces ICP-

SLAM. Chapter 5 discusses the baseline and parallel architectures for acceleration of ICP-

SLAM. Chapter 6 presents an analysis of the accuracy and performance of the ICP-SLAM

algorithm using the CoRBS dataset. Chapter 7 concludes the project and discusses future

work for improving ICP-SLAM.
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CHAPTER 2. BACKGROUND

2.1 Simultaneous Localization and Mapping

SLAM, short for Simultaneous Localization and Mapping, is the high-level problem of au-

tomated map generation without any ground truth knowledge of pose. Localization is the task

of estimating an agent’s pose using discrete sensor readings. While the map is constructed, the

agent must correctly localize itself in the map that it has constructed up to time t, and expand

the map with new sensor information at time t + 1. An abstracted example of visual SLAM

is depicted in 2.1. The relationship between map construction and localization is essential in

SLAM. If the localization is faulty, new data added to any existing map will be inconsistent,

therefore not resembling the environment. In addition, if the map is not properly constructed,

new sensor information will fail to properly localize the agent. All pose estimations by the

SLAM agent will become subject to error. This can lead to problems such as a “death spiral”,

where erroneous map measurements lead to further errors, causing the entire map to become

unusable.

Solving the SLAM problem requires a diverse set of approaches with respect to the type

of sensor data available, timing requirements, and computational resources available. Many

SLAM research projects are focused on batch processing of a sequence of frames. These are often

focused on validating the accuracy of a new algorithm. Others focus on real-time performance

and attempt to be feasible for use with commodity sensors and computational hardware. The

dimensionality of the mapping technique (2D vs 3D) also has a great impact on the overall

approach.
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Figure 2.1 SLAM of a fixed object.

[22]

2.1.1 Sensors

SLAM approaches are often grouped by the type of sensor, and contrasted by the differences

used to make sense of similar sensory input. For example, a robot often needs a 2D map of

an indoor environment to successfully navigate. These applications are becoming increasingly

feasible with the rise of popular LiDAR and high FoV range sensors. These sensors are com-

monly used in tandem with IMU and wheel encoder odometry for accurate sensor fusion. In

[29], a Kalman Filter is used to create a probabilistic map of an office space.

Monocular or stereo view color cameras have been used as sensory input for dozens of

SLAM systems. Using a combination of visual features, distortion correction, and semi-dense

reconstruction techniques, single camera SLAM has been proven to be an effective medium for

camera tracking. The first true visual SLAM system, MonoSLAM [8], used a commodity web

camera and PC hardware to construct and track a sparse feature map. PTAM [14], another key

innovation, introduced the concept of parallel map refinement alongside real time monocular

tracking.

Stereo Vision brings estimated depth information into the equation, with both color imagery

and a dense distance frame available for environmental perception. Stereo vision SLAM has
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captured the interest of researchers in recent years due to the similarity between that approach

and how we as humans perceive our surroundings. In [25], a system for large scale position

tracking over the course of kilometers of travel was proposed using stereo cameras as input. In

2011, [26] presented a dense structure model for use with input from a stereo camera sensor,

and demonstrated the used of disparity maps to localize and track true structure through the

presence of noise. S-PTAM is a modification of the monocular PTAM algorithm with data

from stereo vision [31].

Kinect is a 3D depth and RGB sensor developed by Microsoft, intended as a peripheral for

the Xbox video game consoles and Windows PC’s [5]. It tracks the skeletons of the players

and allows them to control game avatars using physical motions without the presence of a

traditional controller. Although the Kinect was intended solely for use in an entertainment

context, it has gained popularity in the robotics and computer vision communities.

The Kinect was one of the first commercial products to provide researchers with a reliable,

inexpensive 3D depth sensor. It allowed for dense depth information to be combined with an

RGB camera for new sensor fusion fueled scenarios. The Kinect uses a wide-angle Time of

Flight sensor to collect dense 3D information. In the later iteration of the sensor, the Kinect

v2, the depth resolution and precision were improved. The resolution of the RGB camera was

increased from 480p to 1080p. Low light performance and the number of skeleton models that

can be tracked simultaneously were also increased. The Kinect v2 is the sensor used to obtain

the datasets in this thesis.

2.1.2 Iterative Closest Point

Iterative Closest Point (ICP) is an algorithm used to transform a point cloud to align itself

with a reference shape. It can be adapted to align 3D or 2D shapes, in a variety of data formats.

In this thesis, ICP is used for the purposes of localization in the context of the SLAM problem.

It is a common technique employed to solve the problem of scan matching. Over the years,

several variants of ICP have been presented to improve certain performance characteristics.

Adaptations using different data structures and point dimensionality have been demonstrated

as well [18].
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ICP finds the relative transformation between point clouds by iteratively associating points

and recovering the transformation that minimizes a user defined distance-cost metric. The

methods for selecting point associations and cost metrics vary with different ICP implementa-

tions, but all follow the same high-level algorithm.

The ICP algorithm is defined by the following steps [3]:

1. Define the minimum error e and the maximum number of iterations i that ICP will use

for refining the transformation;

2. Given two point clouds, data and source, center each around a common origin;

3. For each point p in data, find the nearest neighbor point q in source;

4. Using these correspondences, construct a covariance matrix;

5. Perform SVD (Singular Value Decomposition) on the covariance matrix;

6. Compute the rotational matrix R from the results of SVD;

7. Rotate source by R (or data by the inverse of R);

8. (Optional) Calculate an offset between all point associations, and translate data accord-

ingly;

9. Calculate the error between data and source;

10. If the computed error is larger than e and the number of iterations is less than i, repeat

steps 2-9.

2.1.2.1 Distance Metrics

ICP implementations have used several metrics for determining the correspondences be-

tween two point clouds. These methods are combined with a cost function to quantify the

similarity between these clouds. The original metric is the Mean Squared Error of Point-to-

Point distance [3]. The distance between points a and b in three dimensions is calculated using

the Euclidean distance equation:
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d(a, b) =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2. (2.1)

.

The mean squared error, or MSE, of an estimation measures the average of the squared

errors found in measurements. Mean squared error is a function of risk corresponding to the

expected value of the squared error loss. With n samples, set of predictions P , and recorded

measurements R, MSE is computed with the equation:

MSE =
1

n

n∑
i=1

(Pi −Ri)
2. (2.2)

Point-to-Point is a metric with moderate resilience to noise, but fails given a large enough

difference between point sets. It assumes that the scanned model is a discrete set of points, with

no filled space between or behind. It also fails to take advantage of any additional information

given about the points such as surface normals or color.

If point normal data is available, a point-to-plane distance metric can be calculated. Given

a map containing surface information, reverse-projecting the scan point normals onto a stored

surface has been shown to improve alignment [36]. This is also known as “ray shooting.”

In an indoor environment, usually containing an abundance of planar surfaces, point-to-

plane error metrics have been shown to greatly increase convergence rates and reduce noise.

This method is highly robust to translations, and works well for small to medium rotations.

When transformations have altered the scanned point set to the point that surface normals no

longer face the correct plane, the quality of associations quickly degrades.

In an alternate ray shooting scheme known as“reverse calibration”, the direction of the

ray is calculated by projecting a line from the center of the camera origin through a scanned

point [36]. This corrects for situations where detected surface normals are noisy, inaccurate,

or large translations between surfaces occurs. A hybrid ray shooting approach was presented

by Blais and Levine in 1995 [4], where a point was projected onto a surface and a radius-

bound point-to-point distance metric was used to search for the nearest neighbor on the target

surface. Point-to-ray distance, and compatibility of intensity were also evaluated. Beyond a



www.manaraa.com

8

simple Euclidean distance metric, the relative angle between surface normals was presented as

a robust method to find point similarities [18].

2.1.2.2 Nearest Neighbor Search

To find the nearest neighbor of a point, otherwise known as a Nearest Neighbor Search,

several methods have been presented. The most basic approach is to iterate over every point

in the target point cloud, compute the distance-cost between the scanned and source points,

and compare this value to the stored minimum [3]. This method guarantees that the nearest

point is found, but has an undesirable runtime of O(N ∗M), where N is the number of points

in the stored point cloud, and M is the number of points in the latest scan. This is referred

to as a brute force search, specified in Algorithm 1. A visualization of the nearest neighbor

associations step can be seen in Figure 2.2.

Input: Scan Point p

Output: The Nearest Neighbor

min distance = MAX DISTANCE;

nearest neighbor = null;

foreach Point q in Map do

distance = euclidian distance(p, q);

if distance ¡ min distance then

min distance = distance;

nearest neighbor = q;

end

end

return nearest neighbor
Algorithm 1: The brute force nearest neighbor search

Although brute force nearest neighbor has a poor worst case runtime, it can easily be paral-

lelized due to the independence of each scan point’s search. The runtime is also predictable and

repeatable given a certain size of the source and data point clouds. Structuring the point data

as arrays allows for consistent size and shape of information, as opposed to other approaches

using advanced data structures. These properties make it desirable and straightforward for

parallel implementations [18].

A k-depth tree is a binary tree data structure which organizes points using subdividing

hyperplanes. k-depth trees allow for O(log(N)) multidimensional searches such as the Nearest
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Figure 2.2 Visualization of the Nearest Neighbors Associations step.

Neighbor search present in ICP [39]. They are popular for use in ICP due to their speed.

Although k-depth tree searches are considered faster than the brute force alternative, tree

imbalance as well as poor hyperplane subdivision can cause reductions in performance. This

data structure performs best when points are evenly distributed across all k dimensions.

Although the methods mentioned above are the two most basic and well known nearest

neighbor searches, there are hundreds of papers written on the topic. k-depth trees are effective

at lower dimensions, but as k increases, runtime savings decrease. Arya et al. proposed a

k − d tree search with radius bound approximations to accelerate runtime [1]. This approach

considers n approximate nearest neighbors, points whose distance d between the searched point

p will never exceed a predefined margin of error. A priority queue was used to reduce search

latency. This error-bound method of approximating the nearest neighbor will guarantee that a

nearest neighbor will be selected within a certain proximity of the true nearest neighbor, and

was demonstrated to improve runtime by orders of magnitude in certain situations. In [35], a

graph of nearest neighbors is presented in which vertices represent points and edges connect

points to respective nearest neighbors. The authors select evenly distributed vertices in the

graph as “seeds” and use a greedy best-first algorithm to quickly find the nearest neighbor.
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2.1.2.3 Mapping

Many different mapping techniques have been presented for use in SLAM applications, each

with their own strengths and weaknesses. Grid maps [27] are human readable and logical in

terms of how we think about the world, but take up large amounts of memory. Because empty

space is filled with redundant data, total mapping volume can be limited. Some attempts to

solve this problem have been presented, such as voxel hashing [20] and octrees [24]. Voxel

hashing compresses spatial information into a lookup table, where the only information stored

is filled space. It combines dense volumetric information with constant time lookups and the

ability to stream data from a voxel lookup table to other 3D representations.

An Octree is a tree data structure which subdivides space into 8 octants. In each octant,

a single three-dimensional point is stored as the center for the recursive subtree. This center

point now defines the center of a smaller octree that occupies the volume of its parent octant.

Octrees greatly reduce the size of map when a small portion has been populated, without any

loss in precision. Octrees are different than k-depth trees, as octrees split the space into 8

sections around a single center point while k-depth trees split it along a dimension.

2.2 Hardware Acceleration

Hardware Acceleration is the act of moving a functional component of a software system

from a general-purpose processor to a dedicated piece of hardware. Hardware acceleration is

used for performance critical tasks such as image processing, graphics, audio, and packet routing

in internet routers. CPU’s traditionally support a sequential path of execution for machine

instructions, and therefore are limited by the size of the data that can be operated on in a given

time frame. Hardware accelerators can greatly increase the size of the dataset operated on by

improving concurrency [7], storing information in close locality to processing elements [15], and

employing fixed length datapaths. Although modern processors have increased throughput

through use of multiple cores and dedicated SIMD units [12], hardware acceleration is still

relevant to performance critical tasks that use large sets of information.
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Creating dedicated hardware is an expensive and time consuming process. Reconfigurable

computing is a paradigm that combines the flexibility of software defined functionality with

the high performance of a dedicated hardware solution. General purpose computing on GPU

(GPGPU) [19] and FPGAs fill the need for many resource intensive tasks at a fraction of the

cost. While they may never reach the performance of a traditional hardware accelerator, they

commonly meet the needs for all but the most rigorous tasks.

A field-programmable gate array (FPGA) is a chip intended to be reconfigured after it has

been manufactured. FPGA’s employ hundreds or even thousands of basic logic cells, which

are configured in a process known as synthesis to form a custom digital circuit. They are

programmed using hardware design languages, visual system design tools, or modern high level

synthesis that attempts to define a digital circuit from imperative programming paradigms.

A major paradigm in hardware acceleration is to compute independent values in parallel

with separate processing elements. As FPGA’s can be configured to stream data through

multiple paths, large performance gains can be realized using multiple independent channels of

execution. FPGA’s can implement fixed-point and integer arithmetic using abundant lookup

tables, but floating-point operations require scarce digital signal processor resources. FPGA’s

have limited I/O channels to communicate with external memory. If a design requires random

access to off-chip memory, performance gains could be eliminated by memory port starvation.

Pipelining is another method to increase computational throughput [15]. When a calcula-

tion is pipelined, intermediary values along the path of execution are stored to increase the total

computing throughput. It is akin to dynamic programming in that excess cycles computing

the same value are eliminated, in exchange for the added cost of caching data at each stage of

the pipeline.

A systolic array is a homogenous network of processing elements, or PE’s [17]. Each pro-

cessing element independently computes a subset of a larger operation on data received from

upstream nodes. Systolic arrays use pipelining and temporal locality of data being operated on

to increase throughput. Systolic arrays have been used for image processing [11], [21] priority

queue algorithms, matrix multiplication [16], and many other applications. A systolic array

architecture was chosen for the high throughput design presented in this thesis.
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CHAPTER 3. RELATED RESEARCH

3.1 Visual SLAM

In 1992, Paul Besl [3] published the first paper to dramatically change the way we think

about point clouds and their applications. This paper introduced ICP, or the Iterative Closest

Point algorithm. It applied 3D point cloud registration to the task of recovering a 6DoF

transformation between a source shape and an incomplete data shape. This algorithm has

revolutionized scan and point cloud alignment techniques for a variety of tasks related to

object tracking [2] and SLAM [45].

In 2003, Andrew Davison published one of the first groundbreaking papers in visual SLAM

history, Real-Time Simultaneous Localisation and Mapping with a Single Camera, otherwise

known as MonoSLAM [8]. It was the first successful application of robotic SLAM techniques

to cross the gap to a camera only computer vision domain. It created a live map of sparse,

persistent landmarks with probablistic motion estimation. A dynamic approach to mapping

allowed for the algorithm to track motion with some resilience to misaligned or lost features.

MonoSLAM achieved real time performance using a desktop CPU.

In 2007, Klein and Murry created the next big leap in mobile SLAM by splitting the tasks

of camera tracking and map refinement into parallel threads [14]. One thread deals exclusively

with tracking camera features, while the other produces a joint 3D map of features captured

in previous frames. This allowed for map optimization techniques normally relegated to offline

structure from motion approaches, and that greatly increased map consistency and precision.

Far more landmarks can be present in the map than in previous, single threaded techniques.

PTAM was applied to an augmented reality use case, where a virtual workspace was rendered

on a flat plane over the tracked area.
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In 2008, Belshaw and Greenspan presented the paper that was one of the biggest inspirations

for this work, A High Speed Iterative Closest Point Tracker on an FPGA Platform. It took

the computationally intensive problem of scan alignment and applied hardware acceleration

techniques with a high-end FPGA to track a single 3D object at 200 FPS [2]. This project

pioneered the concept of a nearest neighbor unit, or a single PE present in hardware that can

quickly find the nearest neighbor to a single point. Using 16 of these nearest neighbor units in

parallel, each of which can compute the distance between a point pair in a single clock cycle,

the 200 FPS performance requirements were met.

Several important distinctions between ICP Tracker and the system presented in this thesis

must be made clear. This tracker used heavy subsampling and ROI masking to cut down the

number of points processed to around 200, and was evaluated using small 3D models, usually

containing fewer than 1000 points. The size of both the scan and model are roughly an order of

magnitude smaller than the data used for this thesis, and assumptions made for single object

tracking do not hold for dense scene reconstruction.

One of the first projects to utilize the Microsoft Kinect sensor, RGB-D SLAM [26], is a

dense 3D mapping system that uses an advanced joint optimization algorithm employing both

shape-based alignment and visual features. It used a form of key frame based loop closure

detection, which allowed for globally consistent mapping and improved pose optimization. The

algorithm was evaluated using data from two large indoor environments. It was shown to create

accurate, consistent maps, but was too slow to run in real time.

Kinect Fusion was a revolutionary dense SLAM system presented by [28]. It used all

available depth information from the Kinect sensor to fuse depth data into a model of surfaces

in real time. The pose of the Kinect is tracked using a version of the Iterative Closest Point

algorithm, matching scan data against the global geometric model. This growing global model

was proven to be a far more stable anchor for depth frame alignment than previous frame-to-

frame approaches [8]. Using GPGPU, localization used all available scan points to track the

camera in real time. Limited drift and high accuracy were recorded with room sized scenes. It

was the most viable real time dense reconstruction system to be presented at the time, and it

is still relevant for robotics and augmented reality to this day.
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3.2 SLAM on a SoC

As mobile computing capabilities increase, limited attempts at implementing visual SLAM

on a system-on-chip have been attempted in recent years. In 2014, Rodriguez-Araujo et. al

presented a distributed image processing system used to localize unmanned ground vehicles in

indoor spaces [33]. A network of connected FPGA processing nodes perform image preprocess-

ing, reducing the amount of data transmitted through wireless channels. Dynamic responses

to guidance and control problems allowed for an inexpensive and resilient system.

In [30], a visual-inertial sensor unit aimed at Micro Aerial Vehicles providing robust real-

time SLAM capabilities is presented. Up to four cameras and an Inertial Measurement Unit

(IMU) are connected to an SoC containing an ARM CPU and FPGA. This system allows for

a novel fusion of visual and inertial sensor data. A high degree of robustness and accuracy

is reported. The FPGA preprocesses visual keypoints to reduce the SLAM computational

overhead and lowers the barrier to entry on computationally limited platforms. Hardware

design, evaluation, selection of sensors, and firmware are covered in this work.
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CHAPTER 4. ICP-SLAM

This section presents a software-only SLAM algorithm that uses a voxel based certainty

map and ICP frame to global alignment. Depth data from the Kinect v2 is preprocessed and

aligned with a growing 3D global model. The global map is updated with each new scan.

4.1 Tools

Several open source tools commonly used for computer vision were used in this project for

image processing, visualizations, and build support. OpenCV [42], short for Open Source Com-

puter Vision Library, is an open source library that contains implementations of many standard

computer vision algorithms. It has universal support across the open source community as well

as industry support. It was selected for this project for image processing, the 3D Viz library,

and cross platform support. The C++ bindings for OpenCV 3.2.0 were used.

The Visualization Toolkit (VTK) [37] is an open source library for visualizing 3D infor-

mation, image processing, and computer graphics. VTK is a comprehensive package that can

visualize information from point clouds, textured 3D models, and volumetric rendering to vec-

tor graphics. It supports integrations with OpenCV, several open source GUI toolkits such

as Qt and Tk, and the Microsoft Windows windowing system. The Viz bindings to call VTK

functions from OpenCV were used in this project.

CMake is another open-source, cross-platform toolset used to build this project across both

Linux and Windows based platforms. CMake simplifies the compilation process using simple

configuration files, and can automate the generation of native makefiles and workspaces.

Microsoft Visual Studio is an integrated development environment (IDE) used in this project

for its ease of build configuration, run configuration, and Intellisense syntax completion. The
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bundled Visual Studio performance profiler was indispensable for collecting high level perfor-

mance information.

4.2 Algorithm

Figure 4.1 High Level Algorithm.

The high-level algorithm for ICP-SLAM is shown in Figure

4.1. In the Initialization step, the map is seeded with data from

the very first frame in the dataset. Camera position and rotation

are initialized to world origin and the identity rotation matrix,

respectively. Then, a depth frame is loaded from the filesystem

and preprocessed using OpenCV. A point cloud data structure is

constructed using the preprocessed frame, and then ICP returns

a relative transform between the global map and the newest scan.

Finally, the estimated transformation is applied and new points

are added to the map. This process is repeated until all depth

frames have been successfully processed.

4.2.1 Preprocessing

When an image is first read from the Kinect sensor, noise

and distortion are present and must be accounted for. Before

depth information is suitable for scan matching, the following

three-step process is implemented to preprocess the depth frame

for transform recovery:

1. Undistortion, or correction for the pinhole camera model;

2. Distance filtering;

3. Denoising.

The preprocessing pipeline is depicted in Figure 4.2.
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4.2.1.1 Undistortion

The Kinect depth sensor returns depth images consistent with a pinhole camera model.

Pinhole cameras, however, distort the images they capture. Thus, the algorithm must account

for all distortion that would hinder correct depth alignment. The pinhole mathematical model

relates a point in 3D space with its projection onto a captured image from an ideal pinhole cam-

era. Using OpenCV’s undistort function, a combination of distortion correction and remapping

of pixels to their “true” image position, the downsides from pinhole cameras can be alleviated.

Figure 4.2 The Preprocessing Pipeline. A raw depth frame is loaded (top left), corrected for

distortion, filtered by distance, and denoised using morphological operations.

Radial and tangential distortion affect image misshaping in different ways. Radial distor-

tion, otherwise known as “barrel” or “fish-eye” distortion, occurs because of the concaveness

of the lens, and can be expressed with the following formula [34]:

Xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6), (4.1)

Ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6). (4.2)

For true pixel coordinates (x, y), with given distortion coefficients k1, k2, k3, and r, a pixel’s

distorted position on an image should be (Xcorrected, Ycorrected).
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Tangential distortion occurs when the lens is not truly parallel to the image capture sensor.

It is also known as “decentering distortion.” Tangential distortion can be represented with the

following formula:

Xcorrected = x + 2p1xy + p2(r
2 + 2x2), (4.3)

Ycorrected = y + p2(r
2 + 2y2) + 2p2xy. (4.4)

The distortion coefficients of a camera can be combined into a single matrix known as a camera

matrix. A camera matrix is a 3 by 4 matrix that describes the mapping from physical objects

in the world to 2D pixels in an image. A camera matrix F is defined as follows:

F =


fx s cx

0 fy cy

0 0 1


. Once the camera intrinsics are known, reversing the distortion becomes a problem of solving

for the original (x, y) given (Xcorrected, Ycorrected). Given corrected coordinates (u, v) for pixel

coordinates (x, y), the reverse mappings Mx and My are calculated as follows:

Mx =

(
u− cx
fx

)
1 + k1r

2 + k2r
4 + k3r

6) + 2p1

(
u− cx
fx

)(
v − cy
fy

)
+ p2

(
r2 + 2

(
u− cx
fx

)2
)
,

(4.5)

My =

(
v − cy
fy

)
(1 + k1r

2 + k2r
4 + k3r

6) + p1

(
r2 + 2

(
v − cy
fy

)2
)

+ 2p2

(
u− cx
fx

)(
v − cy
fy

)
.

(4.6)

Although undistortion must happen every frame, given the same camera parameters remap-

ping pixels to an undistorted image becomes a basic map lookup with interpolation. Distortion

models are continuous functions that rarely line up with discrete pixel coordinates. This is

represented with the following formula:

Idest(x, y) = Idist(Mx(x, y),My(x, y)) (4.7)

, where Idest is the corrected image, Idist is the distorted image, and (x, y) is the image coor-

dinate to solve for. This is not the only way to account for distortion, but it is the method

implemented in the OpenCV library used in this project [42].
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4.2.1.2 Distance Filtering

Points that are too close or too far from the camera are filtered out of the image. The

Kinect v2 is generally very accurate, but precision error increases quadratically with distance

from the camera. Therefore, all points with z values greater than Zmax cannot be considered

reliable for robust scan matching purposes. Inversely, some points are incorrectly labeled as

being too close to the Kinect due to noisy edges and reflective surfaces. Therefore, a distance

filter that eliminates points within Zmin meters of the camera, and points greater than Zmax

meters from the camera is implemented. A depth frame before and after depth filtering is

depicted in Figure 4.3.

Figure 4.3 Depth Filtered Image

4.2.1.3 Denoising

A basic denoising step using morphological operations was used to smooth out rough, patchy

segments of the depth frame. This is common at edges of objects, reflective surfaces, or small

complex geometric shapes. First an erosion operation was performed to eliminate these small

patches of data, and then a dilation fills in the edges of solid objects. The stages of these

denoising steps can be seen in Figure 4.4.
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Figure 4.4 Morphological Denoising Operations. The depth filtered image is first eroded and

then dilated with a 3x3 rectangular structuring element.

4.2.2 Construct a Point Cloud

Once an image is preprocessed, the 2D depth information needs to be transformed to a

3D representation for use in transform recovery. This is done in a multi-step process that is

described below:

1. Subsample the depth image;

2. Project points from screen space to world space;

3. Center all points around the center of mass;

4. Transform the point cloud to the camera’s estimated position.

First, random subsampling is applied to the raw Kinect reading. Random subsampling is a

method for reducing the computational overhead of ICP presented in [23]. It was shown that

cutting down the number of points processed can increase runtime of the Nearest Neighbor

calculation by orders of magnitude while keeping alignment accuracy at nearly perfect levels.

Once a point has been selected for inclusion in the cloud, it is projected from screen space

to physical space. Given the known Kinect depth camera intrinsics matrix F , with linear

focal lengths fx and fy, principal point offsets cx and cy, and axis skew s, the local (x, y, z)

coordinates for a point is calculated using the following formula [13]:



www.manaraa.com

21

F =


fx s cx

0 fy cy

0 0 1


x =

(
(xd − cx) ∗ depth(xd, yd)

fx

)
, (4.8)

y =

(
(yd − cy) ∗ depth(xd, yd)

fy

)
, (4.9)

z = depth(xd, yd). (4.10)

As the Kinect returns depth values in increments of the smallest level of precision (0.2 mm),

all z values must be multiplied by 5000 to convert the distance units to meters.

Once all points have been added to the point cloud, each is offset to a center. This center is

computed by taking the average x, y, and z, of all points. Centering point clouds is important

for calculating relative rotations and transformations.

Centerx =

(∑n
i=1 pix

n

)
, (4.11)

Centery =

(∑n
i=1 piy

n

)
, (4.12)

Centerz =

(∑n
i=1 piz

n

)
, (4.13)

∀p ∈ Scan, pcentered = p− Center. (4.14)

Once the cloud has been fully constructed, it must be transformed from a local coordinate

space to the known global coordinate space. The point cloud is rotated by R, the current

estimated rotation of the SLAM agent, and then translated by T , the current estimated position.

The scan points are aligned into a matrix L, and given a camera rotation R and position p, are

transformed into Ltransformed given the following formula:

L =



x1 y1 z1

x2 y2 z2

. . .

xn yn zn
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Lrotated = RL, (4.15)

Ltransformed = Lrotated + p. (4.16)

4.2.3 Retrieve Transform

As described above, the Iterative Closet Point algorithm is used to recover a 6DoF transfor-

mation between two 3D shapes. It was selected due to its high accuracy, robust convergence of

similar point clouds, and the parallelization potential of the Nearest Neighbor search algorithm.

An example of convergence using ICP is displayed in Figure 4.5.

First, a brute force point-to-point Nearest Neighbor search is implemented to find point

associations. This all-to-all comparison guarantees that the true nearest neighbor of each point

is found, but ensures a worst-case runtime of O(MN), where M is the number of points in the

constructed map, and N is the number of points in the newly scanned point cloud.

Figure 4.5 Convergence of Point Clouds using ICP. Associations between nearest neighbors

are drawn in red.

A modified Euclidean distance formula is presented:

d
′

= (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2. (4.17)

This formula does not use the square root function to return the true distance. This is done

intentionally to reduce the computational overhead, as a consistent relative cost metric still
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returns the correct nearest point. If the correct nearest neighbor is returned, the true distance

can be calculated at post processing.

Singular value decomposition, or SVD, is the matrix decomposition A into the product of

three matrices A = UDV T . U and V have orthonormal columns, and D is diagonal with

positive real entries [34].

SVD takes a rectangular matrix of measurement data, referred to here as the n ∗ p matrix

A, where each row represents a measurement, and each column represents an experimental

condition. The SVD theorem states:

An∗p = Un∗nSn∗pV
T
p∗p, where (4.18)

UTU = In∗n,

V TV = Ip∗p.

For the purposes of this project, SVD is used to determine the relative rotation between

two associated point sets to minimize the distance between them. To format the information in

a way that SVD can solve this problem, a covariance matrix must first be constructed. Given

a set of 3D point associations E, in which all points p in the latest scan are associated with

the nearest point q in the map, matrices M and N can be constructed, and are used to yield

the covariance matrix C using the following formula:

(p, q) ∈ E

M =


q1x q2x qn−1x qnx

q1y q2y . . . qn−1y qny

q1z q2z qn−1z qnz

 N =



p1x p1y p1z

p2x p2y p2z

. . .

pn−1x pn−1y pn−1z

pnx pny pnz


C3∗3 = Mn∗3N3∗n. (4.19)

Now that the covariance matrix point alignments have been created, the relative rotation

R between the data point cloud and map point cloud can be recovered by applying SVD and

using the following formula:
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C3∗3 = U3∗3S3∗3V
T
3∗3, (4.20)

R =
(
V T
)T ∗ (U)T . (4.21)

R is given in terms of a rotation that aligns the map points with scan. To apply the rotation

to the scan set, the inverse matrix must be calculated and applied to the correctly centered

matrix containing the entire scan point cloud. A matrix of points centered around the point

cloud origin, L, is constructed and rotated as follows:

L =



x1 y1 z1

x2 y2 z2

. . .

xn yn zn


,

Lrotated = R−1L. (4.22)

Now that the rotation has been applied to the scan data, a translation is applied. This is

calculated using the distance offset of associated points. It is not applied using the centers of

the map and scan point clouds, as non-associated points contain noise and have no bearing on

the correct rotation. Given the same set of associations E, in which all points p in the latest

scan are associated with the nearest point q in the map:

Offsetx =

(∑n
i=1 pix − qix

n

)
, (4.23)

Offsety =

(∑n
i=1 piy − qiy

n

)
, (4.24)

Offsetz =

(∑n
i=1 piz − qiz

n

)
, (4.25)

∀p ∈ Scan, ptranslated = p + Offset. (4.26)

The MSE, or Mean Squared Error, of the aligned points is then computed. If this error

falls below the predefined threshold e, ICP considers the point clouds to have converged, and

subsequently the relative transformation between the two to be correct. If the computed MSE
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is still higher than the minimum error e, and ICP has not iterated to the maximum number of

times specified, Nearest Neighbor alignment and transform recovery are repeated.

Selecting proper values for the minimum acceptable error and maximum number of itera-

tions is a delicate problem. Allowing ICP to iterate too much slows down runtime to a crawl,

but iterating too little yields poor transform accuracy. MSE values were recorded to demon-

strate the convergence of two scans in a synthetic test bench over the course of 30 ICP iterations

in Figure 4.6. Two consecutive Kinect scans were translated by 0.2m and rotated by 3 degrees

in random directions to illustrate a dramatic ICP scenario. Convergence is rapid in the first 4

iterations, and becomes sluggish quickly after.

Figure 4.6 ICP MSE over the number of iterations.

Selecting appropriate values for maximum iterations i and maximum error e is a balancing

act between acceptable accuracy and speed. An evaluation of runtime vs average alignment

MSE was performed over the Desk, Electrical Cabinet, and Race Car datasets, and can be seen

in Figure 4.7. A lower MSE indicates that ICP returned a more accurate transformation.
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Figure 4.7 MSE and Latency by number of ICP Iterations.

4.2.4 Update Map

Once ICP is confident about the relative transformation between the latest scan and the

global map, new scan points are checked for eligibility to be added to the global map. A

visualization of map building in progress can be seen in Figure 4.8. For a point to be added to

the map, it must meet the following criteria, given minimum point distance m, and threshold

certainty c:

1. Point must at a distance be greater than m from its nearest neighbor;

2. Point must be in an unoccupied voxel grid cell;

3. The voxel cell must have a certainty greater than c that it is filled.

The map created by ICP-SLAM consists of a 3D array of grid cells, commonly referred to as

voxels. Each voxel represents an even subdivision of the overall map volume. The specifications

put forth for this algorithm define a 10x10x10 meter3 physical space be mapped. The memory
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Figure 4.8 A desk scene mapping in progress. The point cloud from the latest scan is rendered

in green, and the constructed map is rendered in yellow. The light grey cone shows

the estimated pose of the camera.

constraints allow for a maximum map size of 300 cells to a side, allowing for a resolution of

3.3x3.3x3.3 cm3.

Before any points are added, each new scan point is converted from true 3D space to voxel

map space. The following formula is used to retrieve the respective voxel cell given a 3D point:

c =
Physical Height

Voxel Map Height
, (4.27)

Xvoxel =

⌊
Xphysical

c

⌋
, (4.28)

Yvoxel =

⌊
Yphysical

c

⌋
, (4.29)

Zvoxel =

⌊
Zphysical

c

⌋
. (4.30)

Whenever a point is detected inside a voxel, the certainty of that voxel being filled space

increases. Every update step, the map updates certainty by increasing all observed solid voxels
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Figure 4.9 Example voxel mapping of a desk scene.

by the metric delta confidence. Once the certainty value of a cell rises above a defined threshold,

the voxel is deemed to be solid and the scanned point is added to the map point cloud. A

rendering of the voxel mapping of a desk point cloud can be seen in Figure 4.9.
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CHAPTER 5. EVALUATION OF ICP-SLAM

The Comprehensive RGB-D Benchmark for SLAM, or CoRBS [46], is a modern RGB-D

dataset that includes time stamped depth and color images combined with highly accurate

ground truth position and rotation captured at 120 Hz from a 3D motion capture system.

Complete scene geometries are also available via high resolution 3D scanners, claiming sub-

millimeter precision. There are twenty sequences of images, capturing four different scenes

with a Kinect v2. Ground truth coordinates at each frame are provided quick evaluation.

5.1 Tracking Accuracy

To fully gauge the success of a SLAM algorithm, one must both test the quality of local-

ization and the final map produced. As this algorithm creates a sparse map of 3D voxels, the

precise nature of the map’s accuracy is difficult to compare to conventional 3D models. How-

ever, the tracking accuracy is characterized by two key metrics: Absolute Translational Error

(ATE) and Relative Pose Error (RPE.) Absolute trajectory error is computed by taking the

Root Mean Squared Error (RMSE) of the estimated position against the ground truth position

at the same time step. ATE can be computed with the following formula:

ATE =
√∑

distance(Positionest, Positiongt)
2. (5.1)

ATE is a good metric for evaluating long term tracking accuracy, but it doesn’t give much

information about granular frame to frame error. RPE computes the Root Mean Squared Error

of both translation and rotation between frames, calculated as follows:
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RPEtranslation =

√
n
i=1

(
distance(Post−1

est , Postest)− distance(Post−1
gt , Postgt)

)2
, (5.2)

RPErotation =

√
n
i=1

(
Angle(Rott−1

est , Rottest)−Angle(Rott−1
gt , Rottgt)

)2
. (5.3)

Table 5.1 ATE by Method

Method D1 D2 E4 H1

KinFu [43] 0.023 0.081 0.57 0.102

Bylow [32] 0.021 0.042 0.035 0.061

Canelhas [32] 0.014 - 0.033 0.230

SDF-TAR [40] 0.015 0.021 0.030 0.091

ICP-SLAM 0.086 0.1292 0.1202 0.2415

Table 5.2 RPE by Method

Method D1 D2 E4 H1

tr. [m] rot. [◦] tr. [m] rot. [◦] tr. [m] rot. [◦] tr. [m] rot. [◦]

Canelhas [32] 0.003 0.472 0.007 0.759 0.019 1.080 0.050 2.085

SDF-TAR [40] 0.003 0.442 0.006 0.768 0.009 0.993 0.020 0.844

ICP-SLAM 0.006 0.792 0.013 1.263 0.032 1.684 0.115 2.336

In 2016, [40] collected important information about the relative accuracy of related SLAM

systems. ATE and RPE are evaluated using this run accuracy data, and were of great utility

for comparing the relative accuracy of this algorithm. PCL’s KinFu (an open source implemen-

tation of Kinect Fusion) [43], and ROS implementations of point-to-implicit methods [32] were

both tested. Results for the relative performance of ICP-SLAM with top of the line SLAM

implementations are shown in Tables 5.1 and 5.2. Four runs from the CoRBS dataset, two

of the Desk Scene (D1 and D2), one of the Electrical Cabinet scene (E4), and one from the

Human Model Scene (H1) were used for direct comparison. The data from ICP-SLAM was

only collected while tracking was stable, as pose information after a combination of failures in

both localization and mapping, becomes irrelevant. This is discussed further in section 5.2.

It quickly becomes apparent that tracking in ICP-SLAM is the least accurate by all metrics.

Unfortunately, the localization method used in ICP-SLAM is not as accurate nor as reliable as

the evaluated alternatives. This is likely due to several factors. First, the other methods use
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dense Signed Distance Fields (SDF) instead of sparse 3D points for their method of surface

registration. SDFs represent 3D voxels with the distance from the nearest surface, instead of

the probabilistic filled/unfilled model used in this thesis. This allows them to utilize surface

normals and interpolation to smooth sensor noise and increase the robustness of tracking.

5.2 Stability

The largest obstacle to ICP-SLAM’s success is here referred to as a death spiral. This is the

combined failure of both tracking and mapping, and results in a map which cannot be correctly

localized, leading to an increasingly incorrectly constructed map. The accumulation of noise

and RPE leads to this problem, as is shown in Figure 5.1. ICP-SLAM will often overcorrect for

noise present, adding erroneous points to the map and therefore making future tracking more

difficult.

An attempt has been made to quantify how and when death spiral occurs in ICP-SLAM.

CoRBS provides the average rotational and translational motion for each run. The length of

time that a single run tracks successfully has been monitored and characterized as the time

that the ATE of the run is less than 0.3 meters. An example run, H1, which tracks successfully

for 476 frames, or 15.86 seconds in physical time, is shown below with the ATE over time. At

frame 476, tracking officially fails. Some interesting behavior in Figure 5.2 shows that, in this

example, the Y position becomes increasingly unstable. This zig zagging overcorrection likely

led to the tracking failure.

After analyzing the runs, a severe rise in ATE always signals the beginning of death spiral

behavior. Once ATE rises above 0.3m, tracking is exceedingly likely to fail. An exploration of

the correlation between the stability of tracking and the camera motion is shown in Figures 5.3

and 5.4. The number of frames tracked before the ATE rose above 0.3 m is measured against

the average translation and average rotation of all recorded runs.
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Figure 5.1 Illustration of how accumulated tracking error causes overcompensation in local-

ization.

When the motion of the Kinect depth sensor is lower than 0.2 m/s, tracking is relatively

stable and can last for over 30 seconds in a run before a death spiral occurs. A stronger

correlation between translation and tracking stability is apparent, although there were three

outliers that tracked for more frames than expected given the trend. This is due to a spike in

translational movement around the time tracking failed.
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Figure 5.3 Number of Successfully Tracked Frames against Average Translational Motion,

evaluated over all available CoRBS data sets.
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Figure 5.4 Number of Successfully Tracked Frames against Average Rotational Motion, eval-

uated over all available CoRBS data sets.
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CHAPTER 6. A PROPOSED FPGA ACCELERATOR FOR ICP-SLAM

This section proposes two hardware architectures for acceleration of the ICP-SLAM algo-

rithm on an embedded SoC. The tools and methods of the design process are discussed, and

an analysis of different design choices is presented. Projected system performance is modeled

and evaluated.

6.1 The Design Process

There is a standard process to follow when approaching hardware acceleration using repro-

grammable logic. It is necessary to understand the algorithm being accelerated. This algorithm

should be profiled using a software implementation to know the candidate functions for hard-

ware acceleration. Once this is known, architectural decisions can be made to best proceed

towards any defined performance goals. These include deciding which portions of the algo-

rithm should be implemented in software or hardware; identifying how hardware accelerator

resources should be distributed; deciding which resources are best suited for implementing a

certain function; and selecting the target platform. Once the architecture has been designed, it

is implemented using one of several hardware design tools available to the FPGA designer. The

software component must be either adapted from an existing implementation or rewritten to

run on the target platform. Finally, the software and hardware subsystems must be integrated

together and the output validated.

The platform that is best suited the profile for a modern embedded SoC is the Avnet Zed-

Board, a development board for the Zynq-7020 SoC [41]. The Zynq architecture is shown in in

Figure 6.1. The chip contains a dual-core ARM Cortex A-9 Application Processor Unit (APU),

a motherboard, communication channels with programmable logic, and other peripherals such
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Figure 6.1 A High Level Diagram of the Zynq-7000 Architecture.

as Ethernet and GPIO pins for use with PMOD peripherals. The ARM APU runs at a fre-

quency of 666 MHz. The ZedBoard has 512 MB of DDR3 memory running at 533 MHz, and

uses an SD card bay for storage.

This application requires file storage and retrieval, as well as support for OpenCV. There-

fore, a variant of the Arch Linux Distribution for ARM was selected to provide an embedded

OS with a small footprint and necessary toolchain support. Using CMake, G++, and Arch,

the OpenCV application can be natively compiled on the ZedBoard.

6.1.1 Profiling

To determine the performance bottlenecks in ICP-SLAM, the software-only C++ implemen-

tation was profiled using the std::chrono timing library. It was initially compiled and evaluated

on a desktop computer running Windows 10 with an Intel i7-4770K CPU and 16 GB of RAM.

After verification of the algorithm’s accuracy, it was built and profiled on the Zedboard ARM

APU. These profiling results can be seen in Table 6.1.
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Table 6.1 Runtime Distribution by Function of ICP-SLAM

ARM X86 Desktop

Function Time (s) Percent Time (s) Percent

Nearest Neighbor 34.72189 98.62% 0.49077 80.09%

Preprocess Image 0.192367 0.55% 0.111729 18.23%

Generate Point Cloud 0.211799 0.60% 0.006452 1.05%

Construct Covariance Matrix 0.026415 0.08% 0.000586 0.10%

SVD 0.005226 0.01% 0.0015 0.24%

Apply Transform 0.044032 0.13% 0.001291 0.21%

Compute MSE 0.004303 0.01% 0.000363 0.06%

Update Map 0.000388 0.00% 0.000142 0.02%

Table 6.1 shows that the Nearest Neighbor search takes up the majority of the runtime,

both in desktop and ZedBoard implementations. For ARM, 98.62% of the runtime is spent

on Nearest Neighbor search, whereas in the x86 Desktop implementation, it takes up 80.08%.

The next most intensive function, image preprocessing, took up 18.23% of the x86 runtime.

Interestingly, it only took up 0.55% of the Zedboard runtime, as Nearest Neighbor’s runtime

dominated all other functions. The breakdown of runtime is shown in Figure 6.2. Time spent

loading images and visualizing the output was not included in these profiling results

6.1.2 Performance Requirements

The original performance target was 30 frames per second, which is how fast the Kinect

sensor returns new depth information. It was determined that this target is not feasible given

the timing constraints. Nearest Neighbor takes up the largest portion of runtime, but even

if it completed instantaneously, 30 frames per second would not be possible. The rest of the

algorithm takes about 0.5 seconds to complete on the ARM APU. Given this information, the

target frame rate for this application on the embedded SoC was established at 2 frames per

second, as this is the ideal frame rate when the runtime of Nearest Neighbor is minimized, but

the remainder of the software implementation is unchanged. Thus, the target Nearest Neighbor

search latency for the hardware accelerator was set to 10 ms.
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Figure 6.2 Runtime Distribution of ICP-SLAM by Function.

6.1.3 High Level Synthesis

High-level synthesis, or HLS, is a form of automated design that translates an algorithmic

specification of a behavior into a functionally equivalent digital hardware implementation [44].

The code is analyzed, constrained per the targeted architecture, and timed to create an RTL

implementation in a hardware description language. This HDL implementation is then synthe-

sized to the gate level using logic synthesis tools. HLS allows for FPGA designers to quickly

iterate over design parameters without worrying about the specifics of RTL design. Vivado

HLS was used to synthesize the proposed architectures in this thesis using C. Preprocessor

directives were used to calibrate the utilization of FPGA resources. User-created test benches

allowed for quick behavioral verification of the module, and automated instrumentation tests

validated the output from simulation. High-level synthesis was used to design and evaluate all

hardware architectures presented in this thesis.
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Figure 6.3 Baseline Hardware System Architecture.

6.2 Baseline Architecture

In this section, a Baseline Nearest Neighbor accelerator architecture is presented and ana-

lyzed. The system level diagram of the baseline architecture is presented in Figure 6.3. The

SD Card stores the Linux filesystem as well as the CoRBs dataset used for evaluation. The

ARM APU reads in files from the dataset, performs preprocessing and generates a point cloud

as described in Section 4.2.2. A BRAM buffer in the reconfigurable logic is used to store the

map cloud, and is populated via VDMA. This buffer is used to reduce communication latency

between the Baseline Nearest Neighbor accelerator and the APU. The Baseline Nearest Neigh-

bor Unit is synthesized on the reconfigurable logic and reads in points from the map buffer via

an HLS FIFO construct.

6.2.1 Dataflow

The system level data flow between the CPU and the Baseline Nearest Neighbor Architec-

ture can be seen in Figure 6.4. In the initialization step, the map point cloud is seeded with

data from the first depth frame. This data is streamed to the map BRAM buffer using VDMA.

Image Preprocessing and Point Cloud construction are then performed on scan data in software.
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Figure 6.4 Data Flow for the Baseline Architecture.
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ICP bookkeeping for preserving the cumulative transformation matrix and number of iterations

is initialized. A single scan point is then written to an address in DRAM, sent to the Nearest

Neighbor architecture via DMA, and initialization of the baseline architecture occurs. Once the

initialization completes, the nearest neighbor search begins and all map points are streamed

through the unit. The nearest neighbor index is placed into a predetermined DRAM address

and the CPU stores the value for transform recovery. This process is repeated for all points in

the scan cloud. Once all nearest neighbors have been recovered, the relative transformation is

computed and applied to the scan cloud as described in Section 4.2.3. This process repeats until

the maximum number of iterations occurs or the point clouds have converged. The map is then

updated as described in section 4.2.4. All new map point indices and coordinates are streamed

to the BRAM map buffer. The entire process is then repeated with the next depth image.

Figure 6.5 Map BRAM Buffer.

6.2.2 Map Buffer

The map buffer is a 10,000 point-long buffer for stor-

ing map points instantiated with BRAM resources. Map

points are appended to the buffer in the initialization and

map update steps. Each element in the map buffer stores

three 24-bit fixed point coordinate values and an index. All

points in the map buffer have the index field initialized to

NO DATA. This constant is used by the Nearest Neighbor

unit to determine when all comparisons have been made.

Whenever a new point is added to the map, the values of the

corresponding buffer index are updated. The buffer storing

a map of size N is depicted in Figure 6.5.

6.2.3 Nearest Neighbor Unit

The architecture of the Nearest Neighbor Unit is shown in Figure 6.6. When a new scan

point is ready to be processed, initialization of the Nearest Neighbor Unit begins. The X, Y,
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and Z values of the point are stored in the Scan Point registers, and the Min Distance and Min

Index fields are initialized to predefined constants MAX DISTANCE and NO ASSOCIATON.

Once these values have been initialized, the Nearest Neighbor unit enables the Map FIFO to

begin streaming map points through the distance comparator as depicted in Figure 6.6. The

unit compares each index to the NO DATA constant as the Nearest Neighbor search is executed.

When NO DATA is seen in the map index field, the nearest neighbor index is flushed back to

DRAM via DMA. This system computes one point-to-point distance in a single clock cycle via

the pipelining directive in Vivado HLS. The Map point cloud is subsequently streamed through

the nearest neighbor unit. This unit compares the distance between a single scan point and each

map point in a single cycle, and updates the index of the closest map point. This architecture

computes the nearest neighbor of a single point in N + D cycles, where N is the number of

map points, and D is the startup delay and communication overhead.

Figure 6.6 Nearest Neighbor Unit Architecture.
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6.3 Accuracy and Performance

When designing the baseline architecture, there were several options to choose from with

respect to the type and width of the data used for distance equations. Vivado HLS supports

synthesizing solutions that use floating point, integer, and fixed point precision computations.

An analysis of accuracy and resource utilization was done using an instrumented C test bench

simulation. Three fixed point precision formats, 16-bit, 24-bit, and 32-bit, were evaluated

against a baseline floating point nearest neighbor unit. The test bench simulated a single as-

sociation computation using 3000 scan points and 10000 map points, all randomly generated,

and was evaluated over the percentage of correctly labeled associations (Pass Percent) and av-

erage error of incorrect associations (Average Error.) These sizes are based off of the maximum

observed scan and map sizes in ICP-SLAM, given the 1/80 sub-sampling factor used in many

test cases. The results of this evaluation can be seen in Table 6.2.

Table 6.2 Nearest Neighbor Accuracy by Bit Widths.

Signed 16-Bit Fixed Point Pass Percent Average Error

5.11 88.57% 0.04389

6.10 94.00% 0.02166

7.9 96.60% 0.11177

8.8 16.63% 0.23438

Signed 24-Bit Fixed Point Pass Percent Average Error

10.14 93.73% 0.00731

9.15 95.67% 0.00681

8.16 98.70% 0.00511

7.17 97.23% 0.01040

6.18 97.23% 0.01040

5.19 88.57% 0.04389

Signed 32-Bit Fixed Point Pass Percent Average Error

10.22 99.15% 0.00015

9.23 98.84% 0.00038

8.24 98.70% 0.00511

7.25 97.23% 0.01040

6.26 97.23% 0.01040

5.27 88.57% 0.04388

Surprisingly, increasing the number of fractional bits in the fixed-point format did not

always yield an increase in pass percentage. When the number of integer bits falls below 8, the
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multiplication in the distance calculation overflows for large distances, and subsequently causes

large alignment errors. Inversely, when the number of fractional bits falls below 16, a lack

of precision causes association discrepancies. This is most apparent in the 16-bit 8.8 format,

when 8 bit fractional components proved to be too imprecise for most point pairs to associate

correctly.

The total synthesized resource utilization and estimated clock rate varied by data width.

Resource usage, estimated performance, and the best accuracy values for a given fixed preci-

sion width have been accumulated and summarized in Table 6.3. Throughput was calculated

using the estimated scan size, latency, and clock period. Time is a measure of the number of

milliseconds that a single associations computation will take to complete under ideal circum-

stances, at maximum allowable clock rate. ICP Time is the estimated completion time for the

Nearest Neighbors step of ICP, factoring in the number of ICP iterations, the time to compute

a single scan associations, and the communication delay. These values are calculated using the

following formulas:

Throughput =
ClockFrequency

Latency ∗ ScanSize
=

1

Latency ∗ ScanSize ∗ ClockPeriod
, (6.1)

Time =
ScanSize

Throughput
, (6.2)

TimeICP = NumICPIterations ∗ (Time + CommunicationDelay). (6.3)

After analyzing the resource utilization data, the 24-bit 8.16 fixed point type was chosen as

the target format for the Baseline Architecture. It is accurate enough while projected to have

the highest throughput of all analyzed bit widths.

Although these performance estimates give a decent idea of the projected throughput, they

don’t model the delay in communication between the ARM processor and the programmable

logic. Streaming each point from the FPGA back to DRAM via DMA takes a small communi-

cation overhead. Assuming that the DRAM is running at 533 MHz (as stated in the ZedBoard

specification document [41]), and the DMA is running at the same clock speed assumed for the
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Table 6.3 Performance vs Resource Utilization for the Baseline Architecture.

Name 16 bit 24 bit 32 bit Floating Point

Resources

DSP 2.73% 5.45% 10.91% 8.64%

FF 0.38% 0.66% 0.85% 1.95%

LUT 0.70% 1.26% 1.56% 6.82%

BRAM 14.29% 14.29% 14.29% 14.29%

Performance

Latency (cycles) 10010 10014 10057 10057

Clock Period (ns) 10.77 8.28 9.53 9.53

Throughput (points/s) 3009 4002 3480 3480

Time (ms) 323.42 248.75 287.53 287.53

Best TimeICP (ms) 5174.77 3979.96 4600.47 4600.47

Best Accuracy 96.60% 98.70% 99.15% 100.00%

Nearest Neighbor unit, total system latency can be modeled using the following equation:

Latency = ICPIterations∗(Tassociations +(Tclock ∗DelayDMA +TDRAM )∗NumberTransfers,

(6.4)

ICPIterations = 16, Tassociations = 248.75ms, TDRAM =
1

fDRAM
, (6.5)

NumberTransfers = ScanSize ∗ 2 = 6000. (6.6)

Figure 6.7 shows the projected latency of the baseline 8.16 fixed-point Nearest Neighbor

architecture. As you can see, even in ideal communication circumstances the total latency

of performing all 16 nearest neighbor associations takes 3.98 seconds. This results in a total

ICP-SLAM latency of 4.46 seconds per frame, or 0.224 frames per second. This is a speedup of

7.89x over the ARM software implementation with an accuracy of 98.7%, but is still not nearly

fast enough to meet the 2 FPS performance goal set earlier.

6.4 Parallel Associations Unit

Although the Baseline Architecture has shown that large speedups can be achieved with

pipelined distance computations, less than 10% of the programmable logic resources were uti-

lized. There are enough available FPGA resources to compute multiple nearest neighbors from

a single stream of map points. In this section, a parallelized architecture to maximize FPGA
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Figure 6.7 Estimated ICP Latency of the Baseline Architecture.

throughput is presented and analyzed with respect to the target performance of 2 FPS for the

embedded ICP-SLAM system, referred to as the Parallel Associations Architecture.

The software-hardware architecture for the Parallel Associations Architecture is almost

identical to the baseline architecture presented earlier. The one significant difference is that

the computation of nearest neighbors in how performed blocks, instead of one at a time. The

system data flow for the Parallel Associations Architecture is displayed in Figure 6.10. An

ARM APU running Arch Linux retrieves the same datasets from the SD card, and OpenCV

performs preprocessing on the image. The VDMA streams blocks of scan points to and from

the re-programmable logic. Points are processed in a pipelined streaming architecture, which

attempts to mitigate several of the disadvantages present in DRAM-based communication.

With limited read and write ports, DRAM access tends to be slow. Computing multiple

nearest neighbors in parallel reduces the number of times that data is streamed back and forth

from the programmable logic.

This high throughput architecture uses a systolic array of independent Nearest Neighbor

processing elements. This systolic array forms the associations pipeline, which is presented
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Figure 6.8 High Level Diagram of the Parallel Architecture.

in Figure 6.9. This systolic array pipeline is made up of many Nearest Neighbor Processing

Elements (PE.) The individual Nearest Neighbor Processing PE has many similarities to the

baseline Nearest Neighbor Unit. It contains a distance metric unit, Nearest Neighbor Index

and Minimum Distance storage registers, and a mechanism to flush the output to an output

FIFO. The biggest difference is the presence of a PE control unit, which interprets command

signals sent by the Pipeline Control FSM. This control unit enables writing for the Minimum

Distance, Nearest Neighbor Index, Scan Point registers, and Map Point registers depending on

the state that the pipeline is presently in. Every clock cycle, the values of the j-th pipeline

register in the Nearest Neighbor unit are written to the next PE, i.e. j + 1. This allows for

single cycle calculation of distance values among all processing elements as long as the pipeline

has valid data. The architecture of the processing element is shown Figure 6.12.
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Figure 6.9 Systolic Nearest Neighbor Architecture.

Figure 6.10 Parallel Data Flow Diagram.

The associations pipeline is con-

trolled at the head via a proposed

Pipeline Control finite state ma-

chine. This module manages the

three stages of pipeline operation:

loading a new batch of scan points

into each nearest neighbor process-

ing element, streaming map points

through the pipeline, and flushing

the nearest neighbor index of each

PE to VDMA.

When implementing the Paral-

lel Associations Architecture, lim-

ited ZedBoard system resources led

to several interesting design choices.

The 8.16 fixed point precision for-

mat was chosen for the x, y, and

z data type as previous testing

had shown that it hits an optimal

combination acceptable accuracy of

98.7%, combined with fewer Digi-

tal Signal Processor resources used

per multiplication operation. Each



www.manaraa.com

50

Nearest Neighbor PE uses a fixed number of DSP48E instances from the programmable logic

depending on the synthesis directives. Each element performs 3 fixed point multiplications, 3

fixed point subtractions, and 3 fixed point additions. For more details, refer to the Vivado HLS

code used for implementing a single fixed point distance calculation that is shown in Figure

6.4.

f i x e d t f i x e d d i s t a n c e ( p o i n t 3 f t a , p o i n t 3 f t b) {
#pragma HLS ALLOCATION i n s t a n c e s=mul l i m i t=N operat i on

f i x e d t deltaX ;

f i x e d t deltaY ;

f i x e d t de l taZ ;

f i x e d t mDeltaX ;

f i x e d t mDeltaY ;

f i x e d t mDeltaZ ;

// I n i t i a l i z e to 0 f o r co r r e c t h l s behav ior

f i x e d t sum = 0 ;

deltaX = a . x − b . x ;

deltaY = a . y − b . y ;

de l taZ = a . z − b . z ;

mDeltaX = deltaX ∗ deltaX ;

mDeltaY = deltaY ∗ deltaY ;

mDeltaZ = deltaZ ∗ de l taZ ;

sum += mDeltaX + mDeltaY + mDeltaZ ;

return sum ;

}

Figure 6.11 Vivado HLS Code to return the fixed modified Euclidean distance between two

points.
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Figure 6.12 Architecture for the Parallel Nearest Neighbor Processing Element.

In this code, a preprocessor directive for multiplier resource allocation is specified. This

resource directive limits the number of multiplier functional units assigned to the fixed distance

module. If this line is omitted, then the Vivado HLS synthesizes a module using 3 multipliers,

prioritizing maximum pipeline throughput. Each functional multiplier uses a single DSP48E

slice on chip. Although this minimizes pipeline latency when unconstrained by DSP resources,

each Nearest Neighbor PE would use 6 DSP48E instances for a single distance calculation.

Limiting multipliers is shown to increase total associations throughput, as more processing

elements can be synthesized on chip. This number was tested using no limit, 2 multiplier limit,

and 1 multiplier limit resource directives and the total FPGA resource usage is shown in Table

6.4.

Although a single parallel associations computation has the lowest latency with 3 multi-

pliers used per PE, the total throughput is the lowest of the three due to smaller number of

concurrent PE’s. Inversely, reusing a single multiplier increased the pipeline initiation interval

from 1 to 3, but still tripled accelerator throughput due to the larger number of concurrent

PE’s. Through experimentation, I have determined that the Vivado HLS synthesizes fixed

point distance calculations using an equal number of multiplication and addition-subtraction

functional units. This means that for every additional multiplier, latency decreases by N , where
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Table 6.4 Nearest Neighbor: Resource Utilization by Multiplier Count.

3-Mul 2-Mul 1-Mul

Number PEs 36 55 110

Chip Utilization

DSP 98.18% 100.00% 100.00%

FF 10.07% 19.18% 42.76%

LUT 23.00% 39.67% 79.37%

BRAM 14.29% 14.29% 14.29%

Estimated Performance

Latency 10081 20119 30229

Clock Period 8.28 8.28 8.28

Throughput 5175.47 6052.954 16114.25

Time per Computation (ms) 0.193219 0.165209 0.062057

Time per ICP (ms) 3.091507 2.643337 0.99291

N is the size of the map, and the number of DSP48E resources used increases by 2M , where M

is the number of concurrent Nearest Neighbor PE’s. Therefore, the highest theoretical output

came from the implementation that used the most concurrent PE’s, each of which required the

fewest possible DSP slices.

The same modeling of communication latency must be evaluated on this architecture as

well. For this delay estimation, a higher level constant time delay for sending all scan data

is modeled given the number of unknowns involved with sending larger blocks of scan data

over a VDMA communication channel. In Figure 6.13, a timing estimation based on different

startup cycle delays of VDMA is presented. The formula to calculate the estimated latency is

as follows:

Latency =

(
1

Throughput
+ CommunicationDelay

)
∗NumberICPIterations (6.7)

As communication delay increases, the pipeline becomes increasingly bogged down waiting

on new information from VDMA, as shown in Table 6.5 and Figure 6.13. Even with a 500

microsecond delay added to every ICP iteration, the parallel associations architecture has a

projected latency of 8.99 ms, which is under the target latency of 10 ms. This leads to a

total ICP-SLAM latency of 0.489 seconds per frame, or 2.044 frames per second. Furthermore,

this translates to a 17.22x speedup over the ARM software implementation, and a 1.95x times
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Table 6.5 Parallel Architecture - Estimated ICP Latency by Communication Delay.

Communication Delay (ms) Estimated ICP Latency (ms)

0 0.99

0.1 2.59

0.2 4.19

0.3 5.79

0.4 7.39

0.5 8.99

Figure 6.13 Estimated Parallel Architecture ICP Latency by Communication Latency.

speedup over the best case baseline architecture model.

6.5 Fixed-Point Evaluation

A comparison of floating point and fixed-point software implementations was done to further

explore projected system behavior. Although an attempt to quantify the performance and

accuracy of the Nearest Neighbor accelerator was done using synthetic test benches, evaluation

of the full ICP-SLAM system output using fixed-point was done to understand projected system

behavior with an integrated hardware accelerator. Fixed-point is expected to run faster on the

ARM APU due to the elimination of floating point multiplications, and may yield runtime
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improvements on the x86 Desktop platform as well. Floating point data was converted 32-bit

10.22 signed fixed-point representation and profiled using the same steps detailed in Section

6.1.1. The results are displayed in Table 6.6. The floating point conversion step represents the

time spent converting fixed-point values back to floating point for processing using SVD.

Table 6.6 Runtime Distribution by Function of Fixed-Point ICP-SLAM

ARM X86 Desktop

Function Time (s) Percent Time (s) Percent

Nearest Neighbor 6.159809 91.48% 0.47122 77.34%

Preprocess Image 0.193128 2.87% 0.120502 19.78%

Generate Point Cloud 0.209230 3.11% 0.006344 1.04%

Construct Covariance Matrix 0.028392 0.42% 0.000584 0.10%

Convert To Float 0.088594 1.32% 0.007329 1.20%

SVD 0.005200 0.08% 0.001491 0.24%

Apply Transform 0.043921 0.65% 0.001293 0.21%

Compute MSE 0.004508 0.07% 0.000382 0.06%

Update Map 0.000371 0.01% 0.000144 0.02%

There were significant speedups in the Nearest Neighbor step for the ARM profiling, whereas

the optimized floating point architecture of the x86 desktop saw minimal gains. The nearest

neighbor step of the fixed-point ARM implementation boasted a 5.64x speedup over the same

floating point function. This is due to the conversion of floating point multiplications and

comparisons in the distance calculation to integer multiplication and bit shift operations, in-

structions shown to be much quicker in ARM.

This brings context to the projected baseline and parallel architecture speedups. Com-

pared to the fixed-point ARM implementation, the baseline architecture achieved ICP-SLAM

speedups of only 1.49x, instead of 7.89x when compared to the floating point software. The

parallel architecture achieves a total projected system speedup of 13.74x, instead of 17.22x

when compared to floating point.

To evaluate the accuracy of the 10.22 fixed-point implementation, the estimated pose was

compared against the same CoRBS datasets and ground truth trajectories [46]. Negligible

reductions in accuracy were observed as shown in Table 6.7 and Table 6.8.
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The similarity of results can be attributed to two primary reasons. First, 10.22 fixed-point

was shown to associate fewer than 1% points incorrectly with respect to floating point, as

displayed in Table 6.3. With over 99% of associations being labeled correctly, nearly identical

rotations and translations should be returned. Secondly, the granularity of a single fractional

component of 10.22, 2−22, is far below the 3.33 cm3 voxel granularity of the ICP-SLAM map

as discussed in Section 4.2.4.

Table 6.7 ATE by Method

Method D1 D2 E4 H1

KinFu [43] 0.023 0.081 0.57 0.102

Bylow [32] 0.021 0.042 0.035 0.061

Canelhas [32] 0.014 - 0.033 0.230

SDF-TAR [40] 0.015 0.021 0.030 0.091

ICP-SLAM 0.086 0.1292 0.1202 0.2415

Fixed ICP-SLAM 0.087 0.1293 0.1202 0.2416

Table 6.8 RPE by Method

Method D1 D2 E4 H1

tr. [m] rot. [◦] tr. [m] rot. [◦] tr. [m] rot. [◦] tr. [m] rot. [◦]

Canelhas [32] 0.003 0.472 0.007 0.759 0.019 1.080 0.050 2.085

SDF-TAR [40] 0.003 0.442 0.006 0.768 0.009 0.993 0.020 0.844

ICP-SLAM 0.006 0.792 0.013 1.263 0.032 1.684 0.115 2.336

Fixed ICP-SLAM 0.006 0.796 0.013 1.270 0.035 1.688 0.117 2.336
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CHAPTER 7. CONCLUSION AND FUTURE WORK

Computer vision based SLAM is a computationally intensive task rarely attempted on

mobile SoC platforms. In this thesis, two hybrid CPU-FPGA architectures were proposed

that aim to accelerate a depth frame based SLAM system, providing a hardware coprocessor to

quickly compute the Nearest Neighbors Search portion of the Iterative Closest Point algorithm.

A basic SLAM algorithm was designed and evaluated on a Desktop PC using the industry

standard Kinect v2 CoRBS dataset. The ZedBoard, a Xilinx SoC, was used as an evaluation

platform to profile the performance of a mobile device. Using the CPU only implementation

of this SLAM algorithm yields a rough run time of 35 seconds per depth frame. Profiling the

code determined that 98% of the algorithm runtime is spent in the Nearest Neighbor Search

step.

Vivado HLS, a high-level synthesis tool from Xilinx, was used to design, synthesize, and sim-

ulate the accuracy of various proposed hardware acceleration solutions. A baseline architecture

was predicted to yield speedups of up to 7.89x over the CPU implementation. Another parallel

architecture was explored aiming to maximize system throughput. This improved architec-

ture used 110 Nearest Neighbor Processing Elements in a systolic array, yielding a maximum

theoretical speedup of 17.22x over the ARM software implementation.

Much work must be done to both increase the SLAM algorithm’s accuracy as well as increase

the total embedded system throughput. While 2 fps was a realistic goal for this project, 30 fps

is the desired image processing framerate. More of the SLAM pipeline must be implemented

in hardware, notably the entire ICP algorithm including rotation and SVD, as well as image

preprocessing and point cloud generation. If the system can be tuned to reduce the resources

allocated the Nearest Neighbor pipeline in exchange for placing more SLAM functionality in

programmable logic, performance could be increased massively.
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Purely depth based ICP-SLAM has been demonstrated to work on limited examples with

low rotational and translational motion, but using additional sensors commonly present on

embedded platforms such as an IMU or wheel encoder for robots could yield improved tracking

accuracy. Fusing sensor input into a probabilistic model using an algorithm such as an Extended

Kalman Filter could aid localization in frames when quick motions degrade the quality of

tracking.

Pure point-to-point distance metric has been demonstrated to work for ICP convergence [3],

but the point to plane error metric would likely yield improved results for the type of indoor

environments seen in the CoRBS dataset. Point-to-plane assumes that points with similar

normals to a plane either in front or behind are likely to be a part of that plane, and tends

to perform well given many flat surfaces in an environment. Point-to-plane is used in many

advanced SLAM systems such as the aforementioned Kinect Fusion system [28], and seems to

be a promising metric that takes advantage of dense depth information provided by the Kinect

v2.

Representing the map as a voxel grid is a simplistic way of mapping, and holds no helpful

information to improve the alignment as localization can’t be done accurately using voxels of

3.3 cm to a side. Using Signed Distance Fields (SDF) for map representation is a modern

SLAM practice, also used in Kinect Fusion, that is useful for rendering, tracking, and aligning

depth information in a consistent global model.

Using ICP alone yields decent results for small rotational and translational distance, but

fails given a quick enough motion. Techniques have been proposed to mitigate ICP’s short-

comings using combined visual feature matching. A high-level approximation of rigid motion

approximation combined with ICP for pose refinement has yielded impressive results with far

more resilience to noise [38]. Implementing a hybrid feature-ICP tracking solution appears as

a viable next step for improving tracking accuracy.
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Berlles. Stereo parallel tracking and mapping for robot localization. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

1373–1378. IEEE, 2015.

[32] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating system. In ICRA

workshop on open source software, volume 3, page 5. Kobe, 2009.

[33] Jorge Rodriguez-Araujo, Juan J. Rodriguez-Andina, Jose Farina, and Mo-Yuen Chow.

Field-programmable system-on-chip for localization of UGVs in an indoor ispace. IEEE

Transactions on Industrial Informatics, 10(2):1033–1043, 2014.

[34] Dan Roggow. Real-time ellipse detection on an embedded reconfigurable system-on-chip.

Master’s thesis, Department of Electrical and Computer Engineering, Iowa State Univer-

sity, 2017.

[35] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries. In

ACM sigmod record, volume 24, pages 71–79. ACM, 1995.

[36] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In Proceed-

ings of the Third International Conference on 3-D Digital Imaging and Modeling, pages

145–152. IEEE, 2001.



www.manaraa.com

62

[37] Will J. Schroeder, Bill Lorensen, and Ken Martin. The visualization toolkit: an object-

oriented approach to 3D graphics. Kitware, 2004.

[38] Gregory C. Sharp, Sang W. Lee, and David K. Wehe. ICP registration using invariant

features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):90–102,

2002.

[39] David A. Simon. Fast and accurate shape-based registration. PhD thesis, Carnegie Mellon

University, 1996.

[40] Miroslava Slavcheva and Slobodan Ilic. SDF-TAR: Parallel tracking and refinement in

RGB-D data using volumetric registration. In Proceedings of the British Machine Vision

Conference. British Machine Vision Association, 2016.

[41] Avnet Team. Zedboard. http://zedboard.org/, 2017. Accessed: 2017-06-09.

[42] OpenCV Developers Team. Opencv. http://opencv.org, 2017. Accessed: 2017-06-09.

[43] PCL Developers Team. Point cloud library. http://www.pointclouds.org/, 2017. Ac-

cessed: 2017-05-02.

[44] Xilinx Team. Vivado high-level synthesis. https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html, 2017. Accessed: 2017-06-09.

[45] Masahiro Tomono. Robust 3d slam with a stereo camera based on an edge-point icp

algorithm. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA), pages 4306–4311. IEEE, 2009.

[46] Oliver Wasenmüller, Marcel Meyer, and Didier Stricker. CoRBS: Comprehensive RGB-D

benchmark for SLAM using kinect v2. In Proceedings of IEEE Winter Conference on

Applications of Computer Vision (WACV), pages=1–7, year=2016, organization=IEEE.

http://zedboard.org/
http://opencv.org
http://www.pointclouds.org/
 https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
 https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	2017
	Evaluation of a SoC for Real-time 3D SLAM
	Benjamin Williams
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Simultaneous Localization and Mapping
	2.1.1 Sensors
	2.1.2 Iterative Closest Point

	2.2 Hardware Acceleration

	3. RELATED RESEARCH
	3.1 Visual SLAM
	3.2 SLAM on a SoC

	4. ICP-SLAM
	4.1 Tools
	4.2 Algorithm
	4.2.1 Preprocessing
	4.2.2 Construct a Point Cloud
	4.2.3 Retrieve Transform
	4.2.4 Update Map


	5. EVALUATION OF ICP-SLAM
	5.1 Tracking Accuracy
	5.2 Stability

	6. A PROPOSED FPGA ACCELERATOR FOR ICP-SLAM
	6.1 The Design Process
	6.1.1 Profiling
	6.1.2 Performance Requirements
	6.1.3 High Level Synthesis

	6.2 Baseline Architecture
	6.2.1 Dataflow
	6.2.2 Map Buffer
	6.2.3 Nearest Neighbor Unit

	6.3 Accuracy and Performance
	6.4 Parallel Associations Unit
	6.5 Fixed-Point Evaluation

	7. CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY

